

EXVIC Engineering and Expeditionary Warfare Center

Remediation of PFAS-Impacted Solids

Jovan Popovic, PhD, NAVFAC EXWC John Kornuc, PhD, NAVFAC EXWC

RITS 2025

Distribution A: Approved for public release. Distribution is unlimited.

This seminar is intended to be informational and does not indicate endorsement of a particular product or technology by the Department of Defense or NAVFAC EXWC, nor should the presentation be construed as reflecting the official policy or position of any of those agencies. Mention of specific product names, vendors, or sources of information, trademarks, or manufacturers is for informational purposes only and does not constitute an endorsement or recommendation by the Department of Defense or NAVFAC EXWC. Although every attempt is made to provide reliable and accurate information, there is no warranty or representation as to the accuracy, adequacy, efficiency, or applicability of any product or technology discussed or mentioned during the seminar, including the suitability of any product or technology for a particular purpose.

Information in this presentation is current as of May 30, 2025.

EXWC: Engineering and Expeditionary Warfare Center NAVFAC: Naval Facilities Engineering Systems Command

Jovan Popovic, PhD NAVFAC EXWC

- Environmental Engineer
- ~10 years experience

John Kornuc, PhD NAVFAC EXWC

- Scientist
- ~40 years experience

Presentation Overview

Introduction

- Technologies for Solids Treatment
 - Established Technologies for PFAS-Impacted Solids
 - On-Base Pilot Study Testing for PFAS Technologies
- Case Studies
- Guidelines for Selecting Solids Treatment Technologies
- Summary/Key Takeaways

Past PFAS RITS

2015	 Emerging Information on Emerging Chemicals 	2021	 Best Practices for Conducting PFAS Remedial Investigations
2016	 Managing Per- and Polyfluoroalkyl Substances (PFAS) at Navy Sites 	2022	 Navigating the 2021 EPA PFAS Strategic Roadmap Emerging Technologies for PFAS Treatment
2017	 Risk Communication for PFAS Sites 	2023	Best Practices for PFAS Sampling and Data Interpretation
2018	 PFAS Remediation: Technologies, Guidance, and Application 		Interpretation
2019	 Managing Emerging Chemicals at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Sites PFAS Site Characterization 	2024	 Considerations for Conducting Ecological Risk Assessments (ERAs) at PFAS sites Considerations for Human Health Risk Assessments (HHRAs) During Remedial Investigations at PFAS Sites

Purpose of Presentation

 Inform audience on emerging strategies for managing PFASimpacted soils/solids, considering existing constraints

(National Archives 2017)

(National Archives 2011)

Commonly Encountered Sources of PFAS-Impacted Solids

When might we encounter PFAS-impacted solids?

- Remediation under CERCLA
- TCRAs and NTCRAs
- IDW
- Excavations

AFFF: Aqueous Film Forming Foam GAC: granular activated carbon IDW: investigation-derived waste NTRCA: Non-Time-Critical Removal Action TCRA: Time-Critical Removal Action

What types of solids may we encounter?

- Soils and sediments; in place or excavated
- Spent filtration media (e.g., GAC, ion exchange resin)
- IDW soils
- Excavated solids; concrete and asphalt
- Biosolids
- Bag filters
- Other materials with residual AFFF

Introduction

Interim PFAS Disposal Decision Tree

Introduction

Remediation of PFAS-Impacted Solids 8

Presentation Overview

- Introduction
- Technologies for Solids Treatment or Disposal
 - Established Technologies for PFAS-Impacted Solids
 - On-Base Pilot Study Testing for PFAS Technologies
- Case Studies
- Guidelines for Selecting Solids Treatment Technologies
- Summary/Key Takeaways

Currently Available Technologies for Solids Treatment and Disposal

- Established Technologies
 - Landfilling
 - Incineration*

(National Archives 2007)

* Not covered in this presentation

- Technologies at Pilot Study Level for PFAS
 - Thermal desorption
 - Smoldering
 - Soil washing
 - Stabilization

Technologies for Solids Treatment

Presentation Overview

- Introduction
- Technologies for Solids Treatment or Disposal
 - Established Technologies for PFAS-Impacted Solids
 - On-Base Pilot Study Testing for PFAS Technologies
- Case Studies
- Guidelines for Selecting Solids Treatment Technologies
- Summary/Key Takeaways

PCB: polychlorinated biphenyl

DLA: Defense Logistics Agency

CN + S: cyanide and sulfide

SVOC: semivolatile organic compound VOC: volatile organic compound

RCRA 8 metals (mercury, arsenic, barium,

cadmium, chromium, lead, selenium, silver)

Disposal in permitted hazardous or solid waste landfill with controls specified in DoD PFAS

Total solids

Ignitability

Waste must be profiled (parameters may vary by receiving facility)

•

pН

Waste can be landfilled as is or stabilized prior to landfilling

Note: stabilization to be covered in subsequent section

• PFAS

guidance

• VOCs

Landfilling

- SVOCs
- PCBs
- CN + S reactivity

Consult DLA Qualified Facilities List

Established Technologies for PFAS-Impacted Solids

Landfilling

Challenges

- Make contact with facility to determine requirements!
- Can be expensive (increase in cost specifically for PFASimpacted waste)
- No definitive answers on acceptable levels for landfills
- Landfill can change their mind
- Limited landfills available
- Landfills sometimes limit quantities and concentrations
- Logistics to multiple landfills based on level also a challenge

Best Practices

- If possible, separate high concentration materials
- Waste profiling required varies by landfill, so communicate with landfill early
- Consider closest landfills first to avoid higher transportation costs

Good to know

- Landfills are implementing back-end leachate management
- Landscape may change depending on leachate regulations

Established Technologies for PFAS-Impacted Solids

Naval Auxiliary Landing Field Fentress (Virginia)

NALF: Naval Auxiliary Landing Field

TPH: total petroleum hydrocarbons

KEY

POINT

- Source of soil: NALF Fentress Soil removed from inside a caisson to 29.5 ft bgs to install the gate (large monitoring well)
- Volume of soil: 14.37 tons
- Average Target PFAS concentration: ~30 µg/kg
- Soil treatment: Stabilization

µg/kg: micrograms per kilogram

ft bgs: feet below ground surface

 Landfill used: Sent to a Subtitle D Landfill (PFAS detections below landfill limit)

- Waste profiling requirements: Flash point, pH, reactive, TPH, PFAS
- Cost (2024): ~\$5,400.00 (just treatment and disposal)
- General: Easy process worked with contractor. Disposal was fast.

Communicate with contractor and landfill early to understand requirements and availability.

Naval Station Newport: Tank Farm 5 (Rhode Island)

- Source of soil: Excavated materials at Naval Station Newport at Tank Farm 5 property
- Volume of soil: 52,342 tons
- PFAS concentration: Ranged from nondetect to 5 µg/kg
- Landfill used: 17,978 tons to Subtitle C, 14,455 tons to Subtitle D #1, 19,910 tons to Subtitle D #2
- Waste profiling requirements: Composite PFAS waste characterization samples were collected at 1/400 cubic yards, and discrete PCB samples were collected at 1/200 cubic yards

- Cost (2022–2023)
 - \$17,092,440 (CTO total)
 - \$14,520,043 (T&D)
- General
 - Sub D landfill #1 had stricter limits with restricted PFAS levels
 - Sub D landfill #2 still has availability, but limited to ppt levels
 - Sub C landfill used currently accepts on case-by-case basis (<1 ppm)

KEY POINT Use of multiple landfills or landfill types may be required.

CTO: contract task order ppm: parts per million

ppt: parts per trillion T&D: transport and disposal

Established Technologies for PFAS-Impacted Solids

DOT: Department of Transportation NSA: Naval Support Action **RI:** remedial investigation

Established Technologies for PFAS-Impacted Solids

KEY POINT

Michigan was the closest state that accepted PFAS-impacted soil (~1,000 miles away).

(includes rolloff rental, delivery and removal of rolloff containers, waste characterization, and load and disposal of rolloff soils)

• General: Expensive/high cost due to remote

Cutler, Maine, location and limited disposal

facilities accepting PFAS waste at that time

• Cost (2022–2023): Approximately \$27,300

- **Cutler Site 10 NSA Fire Station (Maine)**
- Source of soil: Site 10 PFAS RI fieldwork activities (drilling [soil/rock cutting], debris remaining from IDW activities)
- Volume of soil: 8 tons
- PFAS concentration: IDW soil sample collected had nondetect results for the 29 PFAS compounds analyzed. RI maximum concentration: 78 µg/kg
- Landfill used: Disposal as non-RCRA, non-DOT Regulated Material (containing PFAS; Subtitle C landfill)

Presentation Overview

- Introduction
- Technologies for Solids Treatment or Disposal
 - Established Technologies for PFAS-Impacted Solids
 - On-Base Pilot Study Testing for PFAS Technologies
- Case Studies
- Guidelines for Selecting Solids Treatment Technologies
- Summary/Key Takeaways

Solids Treatment Technologies Under Development

- Covering four technologies currently being developed for PFAS-impacted solids
 - Two thermal processes
 - Thermal desorption
 - Smoldering combustion
 - Two nonthermal processes
 - Stabilization
 - Soil washing
- What are some considerations when assessing performance?

Solids Treatment Performance Monitoring

- Considerations for factors affecting treatment performance
 - Thermal desorption/destruction-specific
 - Moisture content and effects on process efficiency
 - Monitoring vapor emissions for desorbed PFAS, unintended decomposition products (e.g., PICs/PIDs);
 - HF production (e.g., Method 26A, Hydrogen Halide and Halogen -Isokinetic Method)
 - Fluorine mass balance
 - Emissions and compromised reactor integrity (corrosivity)
 - Co-contaminants affecting desorption/destruction efficiencies
 - Stabilization/sequestration-specific
 - Presence/absence of certain soil constituents may impact PFAS leaching
 - Presence of precursors
 - Variability with destruction and removal efficiency (e.g., transformation into target analytes)
 - Screening may help elucidate certain performance limitations

PIC(s)/PID(s): product(s) of incomplete combustion/destruction HF: hydrofluoric acid

Solids Treatment Performance Monitoring

- Leachability as a performance measurement for treated solids
 - Behavior of impacted solids; assess "long-term" stability of solids in presence and absence of amendment and/or treatment
 - Implications associated with storing impacted materials, reuse, and disposal options
 - State standards vs. K_{oc} for screening (e.g., NJDEP 2023)
- Many bench-scale, "standardized" leachability methods may not be representative of conditions encountered in the field, leading to overprediction
 - Disruptions to soil structure and air-water interfacial accumulation
 - Use of synthetic reagents or reagent water to simulate leaching
 - No validated methods for PFAS leaching yet, but some tests may provide valuable data for performance, especially if many describe "worst case" scenario

KEY POINT

Multivalidation lab studies underway for adapted LEAF leachability methods. Current recommendation is to not use leachability methods at this time.

K_{oc}: organic carbon partition coefficient LEAF: Leaching Environmental Assessment Framework

Emissions Sampling for PFAS (Thermal)

	Emerging PFAS Emissions Sampling Methods			
	OTM-45	OTM-50	"Future" OTM-55	
PFAS/ Analytes Sampled	 EPA 1633 analytes Polar semi-volatile and particulate- bound PFAS "Whole" PFAS 	 Partial degradation products (e.g., PICs/PIDs) Volatile fluorinated compounds 	 Targeted analysis for nonpolar semivolatile PFAS (e.g., fluorotelomer alcohols) Methylene chloride 	
Application Notes	- Not intended for processes where transformation or partial destruction encountered	 Includes non-targeted analysis; uses NIST library Not for completely mineralized PFAS Impingers used if acid gas and/or >3% H₂O present in vapor 	- In development	
Analysis	- LC-MS/MS for target analytes	- Passivated stainless canister sampling with GC-MS analysis	- Method 0010 sampling with Method 8270 analysis	
Potential Streams	- Stack sampling of thermal desorption systems	- Stack sampling of thermal desorption systems, smoldering, incinerator, etc.	- Stack sampling thermal and incinerator systems	

ELAP: Environmental Laboratory Accreditation Program EPA: United States Environmental Protection Agency GC-MS: gas chromatograph-mass spectrometry LC-MS/MS: liquid chromatography tandem mass spectrometer

NIST: National Institute of Standards and Technology OTM: Other Test Method KEY POINT There are no DoD ELAP laboratories currently accredited for any "OTM" methods.

What is the name of the method that is used to isokinetically sample hydrofluoric acid emissions?

- A. "Future" OTM-55
- *B.* 26*A*
- C. 1633
- D. OTM-50

What is the name of the method that is used to isokinetically sample hydrofluoric acid emissions?

A. "Future" OTM-55 B. 26A

- C. 1633
- D. OTM-50

Thermal Desorption

- Process where PFAS-impacted media (e.g., soil, GAC) is heated to temperatures of ~350–600 °C to drive PFAS into the vapor phase; vapor phase generally captured and treated
 - Destruction not characteristic of thermal desorption processes, but partial decomposition products may form to some extent
 - Alkali salt (e.g., Ca[OH]₂, CaO) supplementation may promote low temperature mineralization of PFAS
- May be performed in situ or ex situ
 - Ex situ
 - Containerized systems (e.g., batch, rotary kiln)
 - Direct treatment of stockpiles with electric heating elements
 - In situ
 - Vadose zone treatment with electric heating elements (e.g., source area treatment)
- Potential waste streams include but are not limited to soils, GAC, biosolids

Thermal Desorption – Containerized Example

- Treats impacted material in an enclosed environment by heating a gas and pulling heated gas through rigid, hollow heating walls traversing the interior of heating chamber
- Bin is filled with impacted material, and bin is covered with an airtight seal
- Heated gas flows through heating walls, separate from impacted material, and returns to air heater to be reheated and recirculated
- 10 ft (width) x 40 ft (length) x 4 ft (height)
- Each bin has a capacity of approximately 47 cubic yards (36 cubic meters)

Thermal Desorption – Containerized Example

(Modified from Iron Creek Group 2025)

Thermal Desorption – Example of In Situ Treatment Process Flow

Pilot Study Testing for PFAS Technologies

Remediation of PFAS-Impacted Solids 27

AFB: Air Force Base

Pilot Study Testing for PFAS Technologies

Thermal Desorption

- General factors affecting
 performance
 - Moisture content
 - Heat distribution
 - Natural PFAS retention in soils, GAC
- Other limitations
 - High energy requirements; increased requirements for media containing high moisture content
 - Unintentional generation of PICs/PIDs

 Thermal oxidation process that uses solid or liquid fuel, an oxidant, inert porous media (e.g., silica sand)

Smoldering

- Temperature ranges from ~500-1,200°C, but maintaining >900°C desirable for mineralization
- Potential waste streams: spent GAC, soils, wastewater solids
- Ex situ batch systems tested to date for PFASimpacted materials; has been conducted in situ for other chemicals
 - Ex situ may allow for better mixing and optimization of treatment mixture

• Key zones in smoldering systems: inert

Smoldering

- heating, reaction, and cooling zones
 - Inert heating zone: endothermic, reactionfree region characterized by phase change processes
 - Reaction zone: oxidation, pyrolysis, gasification
 - Cooling zone: buffer against extinction
- GAC generally considered excellent fuel source for smoldering, but can be costly
- Sand and/or soils for better air flow/increasing smoldering front

Smoldering

- General factors affecting
 performance
 - Air flux
 - Fuel quantity and distribution in soil
 - Oxygen content
 - Fuel energy content

PIC/PID: Products of incomplete combustion/destruction

Heat losses

HF: Hydrofluoric acid

- Other limitations
 - Emissions
 - HF
 - Limestone may be added as emission control
 - PICs/PIDs
 - Potential for zones of uneven heating
 - Hazards associated with high temperature processes

Soil Washing

- Media transfer technology that separates PFAS from soils and transfers it to a liquid stream; liquid undergoes secondary treatment
- Surfactant and/or solvent may be used to increase desorption
- May be used as a strategy to reduce soil volume requiring offsite disposal
- Fine- and coarse-grained materials need to be separated and managed individually
 - PFAS affinity for clays, organics, silts in fines
 - Easier to desorb PFAS from gravel and sands

Soil Washing

- Key parameters
 - Soil characterization
 - Organic carbon content
 - Particle size distribution
 - 0.25–2 millimeters or < 25% silt and clay content is ideal
 - Cation exchange capacity
 - Soil washing throughput/retention time
 - Soil dewatering post-wash

Soil Washing

- General limitations affecting performance
 - High clay and moisture content
 - High silt
 - Soil heterogeneity and inconsistent feed
 - Difficulty separating coarse and fine soil particles
- Other limitations
 - High energy requirements
 - Large volumes of liquids requiring treatment
 - Fines will likely require offsite disposal

CAC: colloidal activated carbon PAC: powdered activated carbon

- Immobilization strategy to reduce PFAS leaching from soils using adsorbent amendment
 - Activated carbon (granular, powdered, colloidal), organoclays, ion exchange resins, polymers
- Electrostatic and/or hydrophobic interactions imparted by adsorbent bind to PFAS, similar to liquids treatment process with filtration media

- May be applied ex situ or in situ
 - Ex situ
 - Mixing adsorbent with soil piles to limit leaching
 - In situ
 - Injection (e.g., CAC, PAC)
 - Soil mixing
 - Trenching
- Solidification agent may be used in conjunction with stabilizers to create a "monolith," further reducing leaching potential by limiting soil permeability
 - Offsite disposal
 - In situ soil mixing

- Performance evaluations and amendment dose optimization should be conducted at bench and pilot scales prior to full-scale implementation
 - Bench scale

Stabilization

- Leachability testing to determine appropriate amendments and doses using site-derived media
- Potential approaches for field pilot performance monitoring of in situ stabilization amendments
 - Porewater concentrations via lysimeters
 - Time integrated/passive samplers
 - Groundwater monitoring
 - "Radius of influence" determination for in situ injections
 - Soil cores and TOC for colloidal activated carbon distribution

TOC: total organic carbon

- General limitations affecting performance
 - Soil constituents competing for sorption sites
 - Uncertainties with amendment distribution, especially for in situ injection into complex formations, may affect effective treatment radius
- Other limitations
 - Uncertainties with long-term stability
 - Increased solids volume

Which property has the most deleterious effect on thermal desorption process performance?

A. Coarse grain sizeB. Inert Porous Media (IPM)C. Moisture

Which property has the most deleterious effect on thermal desorption process performance?

A. Coarse grain sizeB. Inert Porous Media (IPM)C. Moisture

The smoldering combustion process is comprised of inert heating, reaction, and _____ zones

The smoldering combustion process is comprised of inert heating, reaction, and **cooling** zones

Summary of Solids Treatment Technologies

	Thermal Desorption	Smoldering Combustion	Soil Washing	Stabilization/ Solidification
Technology Readiness Level (TRL) for PFAS- Impacted Solids	~8; Multiple pilot projects completed	∼8; Multiple pilot projects completed	 ∼7; System prototypes tested domestically 	9 ; Broad application to impacted solids
Availability	- Multiple vendors with commercially available or pilot- scale units	- Vendor with commercially available or pilot-scale units	- Vendor with commercially available or pilot-scale units	- Multiple US vendors
Advantages	- Removes PFAS from solids	- Removes PFAS from solids and may promote mineralization	- Transfers PFAS from solids to liquid phase	 Generally low mass of stabilizer required Many stabilizer choices
Summary of Limitations	 High energy requirements, exacerbated by soil moisture Uneven heating or reaction zones may result in untreated areas Potential for PIC/PID and HF formation (emissions) Vapor phase capture and treatment requirement 	 Uneven heating or reaction zones may result in untreated areas May require amendment of fuel and inert porous material Potential for PIC/PID and HF formation Vapor phase capture and treatment requirement 	 Large process infrastructure May only be effective for reducing PFAS in coarse materials; disposal of fines Large volumes of PFAS- impacted water generated & associated treatment May require addition of co- solvent or surfactant Efficacy/utility still not fully understood 	 Does not remove or destroy PFAS Long-term stability uncertain May require reapplication Increases disposal volumes

	Thermal	Smoldering	Soil Washing	Stabilization/
	Desorption	Combustion		Solidification
Cost Estimate*	~\$500 per ton (variable; TRS, 2023)	~\$260-330 per ton (2016 estimate; Vidonish et al. 2016)	~\$100-\$200 per ton, excluding residuals treatment and disposal (ESTCP ER20-5258)	~\$100-150 per ton, assuming 2% (w/w) amendment

* Costs vary depending on site conditions, technology related factors, and soil volume treated. More accurate cost estimates should be developed on a project-by-project basis.

Break

Presentation Overview

- Introduction
- Technologies for Solids Treatment or Disposal
 - Established Technologies for PFAS-Impacted Solids
 - On-Base Pilot Study Testing for PFAS Technologies
- Case Studies
- Guidelines for Selecting Solids Treatment Technologies
- Summary/Key Takeaways

Thermal Desorption

- Conducted under ESTCP ER23-8369 (Ongoing)
 - Joint Base Elmendorf-Richardson (JBER)
- Demonstrate ex situ thermal treatment of PFAS applying thermal conduction heating
- Objectives
 - PFAS removal in soil to below EPA Residential and ADEC RSLs
 - Treatment of PFAS in extracted vapors and process water

ADEC: Alaska Department of Environmental Conservation ESTCP: Environmental Security Technology Certification Program RSL: Regional Screening Level

Equipment Layout (Top View)

Case Studies

Remediation of PFAS-Impacted Solids 47

Horizontal Heater Layout

(TRS 2024)

Soil Stockpile Treatment Cell Construction

(TRS 2024)

Remediation of PFAS-Impacted Solids 49

Completed Soil Stockpile Treatment Cell

(TRS 2024)

Case Studies

Remediation of PFAS-Impacted Solids 50

Title	Ex Situ JBER
Max Total PFAS Concentration (µg/kg)	50
Volume soil treated (yd ³)	2,000
Heated Zone Thickness/Height (ft)	13
Heater Orientation	Horizontal
Linear Heater Length (ft)	5,230
Linear Vapor Recovery Screen Length (ft)	360
Temperature Monitoring Sensors	30

yd³: cubic yards

Thermal Desorption Results

Case Studies

Remediation of PFAS-Impacted Solids 52

Thermal Desorption Results

	JBER Soil - Post TCH	Sample	EPA Residential Soil RSL	ADEC MTG Soil	Laboratory Detection
	Max Concentrations	Location(s)	(TR 1E-06, THQ 0.1)	Cleanup Level	Limit
Analyte	(µg/kg)	Above ND	(µg/kg)	(µg/kg)	(µg/kg)
PFBA	ND	-	7800	-	0.15 - 0.18
PFPeA	ND	-	-	-	0.0088 - 0.011
PFHxA	0.027 J	F04-60.8	3200	-	0.014 - 0.17
PFHpA	ND	-	-	-	0.02 - 0.026
PFOA	ND	-	0.019	1.7	0.07 - 0.085
PFNA	ND	-	19	-	0.05 - 0.066
PFDA	ND	-	-	-	0.039 - 0.051
PFBS	ND	-	1900	-	0.006 - 0.0079
PFPeS	ND	-	-	-	0.017 - 0.023
PFHxS	ND	-	130	-	0.018 - 0.024
PFOS	ND	-	0.63	3	0.023 - 0.028
6:2 FTS	ND	-	-	-	0.051 - 0.067
8:2 FTS	ND	-	-	-	0.049 - 0.065
PFOSA	ND	-	-	-	0.026 - 0.034
ADONA	0.16 J	D04-35.6	-	-	0.0079 - 0.011
PFMPA	ND	-	-	-	0.0052 - 0.0069
5:3 FTCA	ND	-	-	-	0.09 - 0.12
7:3 FTCA	ND	-	-	-	0.14 - 0.19

MTG: migration to groundwater ND: nondetect TCH: thermal conduction heating THQ: target hazard quotient

TR: target risk **Case Studies**

All locations tested below Alaska DEC standards and EPA Residential RSLs.

Thermal Desorption Summary

- Highly scalable and adaptable technology to handle variable treatment scenarios
 - May be operated both in situ and ex situ
 - Large soil volumes may be easily addressed through additional electrode placement
- Soil treated to below Alaska DEC soil cleanup levels and EPA Residential RSLs
- Combined PFOA and PFOS concentrations in discharge process water below 4 ng/L

ng/L: nanograms per liter PFOA: perfluorooctanoic acid PFOS: perfluorooctanesulfonic acid

Smoldering Combustion Conducted at JBER

⁽Savron 2024)

- Design/fabricate system consisting of two 35-cubicmeter treatment vessels
- Demonstrate treatment of PFAS-impacted soil to below ADEC MTG criteria for PFOS and PFOA
- Generate technology
 performance data

System Fabrication

(Savron 2024)

(Savron 2024)

Case Studies

Remediation of PFAS-Impacted Solids 57

(Savron 2024)

(Savron 2024)

(Savron 2024)

Case Studies

Remediation of PFAS-Impacted Solids 60

(Savron 2024)

Smoldering Combustion Sampling

Smoldering Combustion Results Summary

(Savron 2024)

Soil Results

- > 99.9% reduction of PFAS (to near or below detection limits)
- Fluorine primarily retained as calcium fluoride (CaF₂)

Emissions Results

- < 0.2% of total fluorine emitted as PFAS
- < 2% of total fluorine emitted as HF
- Fluorinated breakdown products can be captured via vapor-phase GAC

Presentation Overview

- Introduction
- Technologies for Solids Treatment or Disposal
 - Established Technologies for PFAS-Impacted Solids
 - On-Base Pilot Study Testing for PFAS Technologies
- Case Studies
- Guidelines for Selecting Solids Treatment Technologies
- Summary/Key Takeaways

Guidelines for Selecting/Implementing Technologies

- Ensure remedy can achieve protectiveness of human health and environment through eliminating exposure pathways or preventing contact with receptors
 - Understand that containment, institutional controls, etc., may be only technically practicable strategy
- Leverage historical data from treatability studies and past implementation at the installation (or under similar conditions)

ERP: Environmental Restoration Program FS: feasibility study Navy: Department of the Navy

Guidelines for Selecting/Implementing Technologies

- Conduct bench-scale and on-site pilot treatability studies if sufficient information for technology cost and performance is not available for conditions specific to your site
 - May be conducted under FS, remedial design/remedial action phases
- Perform alternatives analysis (Chapter 8; Navy ERP Manual)
- Collaborate with baselevel management offices
 - Technology footprint and setup may require additional permissions
- Develop contingencies (alternative handling or disposal methods and costs) of managing the treated soil, if it does not meet applicable screening criteria for unrestricted or planned use

Remediation of PFAS-Impacted Solids 66

PA/SI: Preliminary Assessment/Site Inspection

Guidelines for Selecting/Implementing Technologies

Prior to Excavation

 If available, leverage data from previous investigations (e.g., PA/SI, RI, etc.) to inform potential impacts to soils prior to excavation

Preliminary Considerations for Excavated Soils Management

- If no data are available but there is suspected PFAS release in targeted excavation area, explore possibility for screening or characterization of excavated area
- If excavated soil is to be stockpiled away from excavation site, identify whether any potential receiving groundwater and surface waters may be affected
 - Consider alternative storage areas
- Maintenance of impermeable coverings and underlining

Preliminary Considerations for Excavated Soils Management

- During & Post-Excavation
 - If available, use characterization data to segregate soils based on high vs low concentrations/non-detect to promote more cost-effective management
 - Keep other construction debris (e.g., asphalt or concrete) separate from soils

Presentation Overview

- Introduction
- Technologies for Solids Treatment or Disposal
 - Established Technologies for PFAS-Impacted Solids
 - On-Base Pilot Study Testing for PFAS Technologies
- Case Studies
- Guidelines for Selecting Solids Treatment Technologies
- Summary/Key Takeaways

Summary and Key Takeaways

- Management of PFAS-impacted soils and other impacted materials (e.g., aggregate) are an ongoing issue at multiple installations
 - To date: Limited availability of effective technologies for removing PFAS from soils; some strategies show promise and have more advanced Technology Readiness Levels (TRLs)
- Presented existing and developing strategies for PFAS-impacted solids management
 - Mature
 - Landfilling (off-site)
 - Developing
 - Thermal (on-site)
 - Desorption
 - Smoldering Combustion
 - Soil washing (on-site; likely requires off-site disposal for some components)
 - Stabilization

Summary and Key Takeaways

- Both Thermal Desorption and Smoldering Combustion processes demonstrated considerable removal performance with PFASimpacted JBER soils
 - PFAS removal to non-detect for most target analytes in treated soils*
- Described process limitations, emissions considerations

(National Archives 1988)

*Target analyte list could grow in the future, as analytical methods improve

Remediation of PFAS-Impacted Solids 71

OSD: Office of the Secretary of Defense RPM: remedial project manager

Summary/Key Takeaways

Summary and Key Takeaways

- Landfilling: Make early contact with disposal facilities to determine requirements and availability
- Coordinate technology use with regulators prior to demonstration or implementation at your site
- OSD plans to update relevant disposal guidance; RPMs should always follow Navy and OSD PFAS policy
- Develop applicable screening criteria and alternative handling or disposal methods for treated soil before project starts

References

ASD. July 2023. Interim Guidance on Destruction or Disposal of Materials Containing PFAS

Clean Harbors. (n.d.). Incineration Facilities. Retrieved February 16, 2025. https://www.cleanharbors.com/services/technical-services/waste-disposal-services/incineration

Crisenbery, M., 2023. Clean Harbors Aragonite PFAS Test Program Results (Seminar). August.

Deeb, R., Leeson, A., Wong, M., and Major, D. Management of PFAS in the Environment: Research & Demonstrations. SERDP & ESTCP Webinar Series (#197). November 2023. https://serdp-estcp.mil/resources/details/e633cc36-2973-40a8-8530-10ffb75b6b91/advances-in-pfas-destructive-technologies

EPA. "How-To" Guide for the Leaching Environmental Assessment Framework. 2019. https://www.epa.gov/sites/default/files/2019-05/documents/final_leaching_environmental_assessment_framework_leaf_how-to_guide.pdf

EPA. Interim Guidance on the Destruction and Disposal of PFAS and materials containing PFAS. 2024. https://www.epa.gov/pfas/interim-guidance-destruction-and-disposal-pfas-and-materials-containing-pfas

EPA. Other Test Method 50 (OTM-50) Sampling and Analysis of Volatile Fluorinated Compounds from Stationary Sources Using Passivated Stainless-Steel Canisters. January 2025. https://www.epa.gov/system/files/documents/2025-01/otm-50-release-1-r1.pdf

EPA. Revision 0 (1/13/2021) Other Test Method 45 (OTM-45). 2021. https://www.epa.gov/sites/default/files/2021-01/documents/otm_45_semivolatile_pfas_1-13-21.pdf

Iery, R, Crownover, E, and Heron, G., 2024. Thermal Remediation of PFAS in Soil. Navy Lunch and Learn with TRS (Seminar). October.

NJDEP, 2023. PFAS Soil and Soil Leachate Remediation Standards Basis & Background. for the Migration to Ground Water Exposure Pathway for Perfluorononanoic Acid (PFNA), Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulfonate (PFOS) and Hexafluoropropylene Oxide Dimer Acid and its Ammonium Salt (GenX). June.

Rashwan, T.L., Fournie, T., Green, M., Duchesne, A.L., Brown, J.K., Grant, G.P., Torero, J.L. and Gerhard, J.I., 2023. Applied smouldering for co-waste management: Benefits and trade-offs. Fuel Processing Technology, 240, p.107542.

Scholes, G., April 2021. Smoldering Combustion (STARx) for the Treatment of Contaminated Soils and Liquid Organic Wastes–From Prototype to Full Scale Application. https://esaa.org/wp-content/uploads/2021/04/17-Scholes.pdf

Weber, N.H., Grimison, C.C., Lucas, J.A., Mackie, J.C., Stockenhuber, M. and Kennedy, E.M., 2024. Influence of reactor composition on the thermal decomposition of perfluorooctanesulfonic acid (PFOS). Journal of Hazardous Materials, 461, p.132665.
Points of Contact

Presenters

Jovan Popovic

NAVFAC EXWC

jovan.popovic.civ@us.navy.mil

Topic Champion Grace Petersen NAVFAC EXWC sarah.g.petersen.civ@us.navy.mil

John Kornuc NAVFAC EXWC john.j.kornuc.civ@us.navy.mil

Questions